Validating a Novel 2D to 3D Knee Reconstruction Method on Preoperative Total Knee Arthroplasty Patient Anatomies

Author:

Factor Shai1ORCID,Gurel Ron1ORCID,Dan Dor2,Benkovich Guy3,Sagi Amit456,Abialevich Artsiom578ORCID,Benkovich Vadim578

Affiliation:

1. Division of Orthopedic Surgery, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel

2. Orthopedic Department, Meir Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 4428164, Israel

3. Orthopedic Department, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 5262000, Israel

4. Orthopedic Department, Barzilai Medical Center, Ashkelon 78278, Israel

5. Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8499000, Israel

6. South West London Elective Orthopaedic Centre, Epsom KT18 7EG, UK

7. Department of Orthopedic Surgery, Soroka Medical Center, Beer Sheva 84101, Israel

8. Israeli Joint Health Center, Tel Aviv 69710, Israel

Abstract

Background: As advanced technology continues to evolve, incorporating robotics into surgical procedures has become imperative for precision and accuracy in preoperative planning. Nevertheless, the integration of three-dimensional (3D) imaging into these processes presents both financial considerations and potential patient safety concerns. This study aims to assess the accuracy of a novel 2D-to-3D knee reconstruction solution, RSIP XPlan.ai™ (RSIP Vision, Jerusalem, Israel), on preoperative total knee arthroplasty (TKA) patient anatomies. Methods: Accuracy was calculated by measuring the Root Mean Square Error (RMSE) between X-ray-based 3D bone models generated by the algorithm and corresponding CT bone segmentations (distances of each mesh vertex to the closest vertex in the second mesh). The RMSE was computed globally for each bone, locally for eight clinically relevant bony landmark regions, and along simulated bone cut contours. In addition, the accuracies of three anatomical axes were assessed by comparing angular deviations to inter- and intra-observer baseline values. Results: The global RMSE was 0.93 ± 0.25 mm for the femur and 0.88 ± 0.14 mm for the tibia. Local RMSE values for bony landmark regions were 0.51 ± 0.33 mm for the five femoral landmarks and 0.47 ± 0.17 mm for the three tibial landmarks. The RMSE along simulated cut contours was 0.75 ± 0.35 mm for the distal femur cut and 0.63 ± 0.27 mm for the proximal tibial cut. Anatomical axial average angular deviations were 1.89° for the trans epicondylar axis (with an inter- and intra-observer baseline of 1.43°), 1.78° for the posterior condylar axis (with a baseline of 1.71°), and 2.82° (with a baseline of 2.56°) for the medial–lateral transverse axis. Conclusions: The study findings demonstrate promising results regarding the accuracy of XPlan.ai™ in reconstructing 3D bone models from plain-film X-rays. The observed accuracy on real-world TKA patient anatomies in anatomically relevant regions, including bony landmarks, cut contours, and axes, suggests the potential utility of this method in various clinical scenarios. Further validation studies on larger cohorts are warranted to fully assess the reliability and generalizability of our results. Nonetheless, our findings lay the groundwork for potential advancements in future robotic arthroplasty technologies, with XPlan.ai™ offering a promising alternative to conventional CT scans in certain clinical contexts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3