A Novel Ear Impression-Taking Method Using Structured Light Imaging and Machine Learning: A Pilot Proof of Concept Study with Patients’ Feedback on Prototype

Author:

Chua Kenneth Wei De1ORCID,Yeo Hazel Kai Hui1,Tan Charmaine Kai Ling2,Martinez Jose C.2,Goh Zhi Hwee3,Dritsas Stylianos3,Simpson Robert E.2

Affiliation:

1. Department of Otorhinolaryngology-Head and Neck Surgery, Allied Health, Audiology, Changi General Hospital, Singapore 529889, Singapore

2. Department of Electronic, Electrical and Systems Engineering, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore

3. Department of Architecture and Sustainable Design, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore

Abstract

Introduction: Taking an ear impression is a minimally invasive procedure. A review of existing literature suggests that contactless methods of scanning the ear have not been developed. We proposed to establish a correlation between external ear features with the ear canal and with this proof of concept to develop a prototype and an algorithm for capturing and predicting ear canal information. Methods: We developed a novel prototype using structured light imaging to capture external images of the ear. Using a large database of existing ear impression images obtained by traditional methods, correlation analyses were carried out and established. A deep neural network was devised to build a predictive algorithm. Patients undergoing hearing aid evaluation undertook both methods of ear impression-taking. We evaluated their subjective feedback and determined if there was a close enough objective match between the images obtained from the impression techniques. Results: A prototype was developed and deployed for trial, and most participants were comfortable with this novel method of ear impression-taking. Partial matching of the ear canal could be obtained from the images taken, and the predictive algorithm applied for a few sample images was within good standard of error with proof of concept established. Discussion: Further studies are warranted to strengthen the predictive capabilities of the algorithm and determine optimal prototype imaging positions so that sufficient ear canal information can be obtained for three-dimensional printing. Ear impression-taking may then have the potential to be automated, with the possibility of same-day three-dimensional printing of the earmold to provide timely access.

Funder

CGH-SUTD Health Technology Innovation Fund

Publisher

MDPI AG

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3