Autosomal Dominant Retinitis Pigmentosa Secondary to TOPORS Mutations: A Report of a Novel Mutation and Clinical Findings

Author:

Eid Alen T.1,Eid Kevin Toni2,Odom James Vernon1,Hinkle David3,Leys Monique1ORCID

Affiliation:

1. Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, USA

2. Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84112, USA

3. Tulane University School of Medicine, New Orleans, LA 70112, USA

Abstract

Purpose: Mutations in Topoisomerase I–binding RS protein (TOPORS) have been previously documented and have been described to result in pathological autosomal dominant retinitis pigmentosa (adRP). In our study, we describe the various genotypes and clinical/phenotypic manifestations of TOPORS-related mutations of our unique patient population in Rural Appalachia. Methods: The medical records of 416 patients with inherited retinal disease at the West Virginia University Eye Institute who had undergone genetic testing between the years of 2015–2022 were reviewed. Patients found to have pathologic RP and mutations related to TOPORS were then analyzed. Results: In total, 7 patients (ages 12–70) were identified amongst three unique families. All patients were female in our study. The average follow-up period was 7.7 years. A mother (70 yr) and daughter (51 yr) had a novel heterozygous nonsense point mutation in TOPORS c.2431C > T, p.Gln811X (Exon 3) that led to premature termination of the desired protein resulting in early onset vision loss, cataract formation, and visual field restriction. The mother developed a full-thickness macular hole which was successfully repaired. Five other patients were found to have previously described TOPORS mutations. Visual field loss was progressive with age in both cohorts. Conclusions: Seven patients at our institution were identified to have mutations in TOPORS resulting in autosomal dominant retinitis pigmentosa. Two patients were found to have novel truncating mutations in the TOPORS gene resulting in profound night blindness and visual field loss, recurrent macular edema, and in one individual, epiretinal membrane formation leading to a macular hole which was able to be successfully repaired.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3