Intelligent Reflecting Surface-Assisted Physical Layer Key Generation with Deep Learning in MIMO Systems

Author:

Liu ShengjieORCID,Wei Guo,He Haoyu,Wang HaoORCID,Chen Yanru,Hu Dasha,Jiang Yuming,Chen LiangyinORCID

Abstract

Physical layer secret key generation (PLKG) is a promising technology for establishing effective secret keys. Current works for PLKG mostly study key generation schemes in ideal communication environments with little or even no signal interference. In terms of this issue, exploiting the reconfigurable intelligent reflecting surface (IRS) to assist PLKG has caused an increasing interest. Most IRS-assisted PLKG schemes focus on the single-input-single-output (SISO), which is limited in future communications with multi-input-multi-output (MIMO). However, MIMO could bring a serious overhead of channel reciprocity extraction. To fill the gap, this paper proposes a novel low-overhead IRS-assisted PLKG scheme with deep learning in the MIMO communications environments. We first combine the direct channel and the reflecting channel established by the IRS to construct the channel response function, and we propose a theoretically optimal interaction matrix to approach the optimal achievable rate. Then we design a channel reciprocity-learning neural network with an IRS introduced (IRS-CRNet), which is exploited to extract the channel reciprocity in time division duplexing (TDD) systems. Moreover, a PLKG scheme based on the IRS-CRNet is proposed. Final simulation results verify the performance of the PLKG scheme based on the IRS-CRNet in terms of key generation rate, key error rate and randomness.

Funder

National Natural Science Foundation of China

Science and Technology on Communication Security Laboratory

Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3