Catalytic Oxidation Activity of NO over Mullite-Supported Amorphous Manganese Oxide Catalyst

Author:

Yang Jianlin1,Zhao Lu1,Zhou Tianran2,Ma Shuhua345,Wang Xiaohui345

Affiliation:

1. College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China

2. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

3. CAS Key Laboratory for Green Processes and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

4. Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

5. National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Nitric oxide (NO) can pose a severe threat to human health and the environment. Many catalytic materials that contain noble metals can oxidize NO into NO2. Therefore, the development of a low-cost, earth-abundant, and high-performance catalytic material is essential for NO removal. In this study, mullite whiskers on a micro-scale spherical aggregate support were obtained from high-alumina coal fly ash using an acid–alkali combined extraction method. Microspherical aggregates and Mn(NO3)2 were used as the catalyst support and the precursor, respectively. A mullite-supported amorphous manganese oxide (MSAMO) catalyst was prepared by impregnation and calcination at low temperatures, in which amorphous MnOx is evenly dispersed on the surface and inside of aggregated microsphere support. The MSAMO catalyst, with a hierarchical porous structure, exhibits high catalytic performance for the oxidation of NO. The MSAMO catalyst, with a 5 wt% MnOx loading, presented satisfactory NO catalytic oxidation activity at 250 °C, with an NO conversion rate as high as 88%. Manganese exists in a mixed-valence state in amorphous MnOx, and Mn4+ provides the main active sites. The lattice oxygen and chemisorbed oxygen in amorphous MnOx participate in the catalytic oxidation of NO into NO2. This study provides insights into the effectiveness of catalytic NO removal in practical industrial coal-fired boiler flue gas. The development of high-performance MSAMO catalysts represents an important step towards the production of low-cost, earth-abundant, and easily synthesized catalytic oxidation materials.

Funder

Foundation of Liaoning Province Education Administration of China

Beijing Natural Science Foundation

Ningxia Hui Autonomous Region’s Key Research and Development Plan

Industrial Process Carbon Neutralization Technology Innovation Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3