Isothermal Experiments on Steam Oxidation of Zr−Sn−Nb Alloy at 1050 °C: Kinetics and Process

Author:

Jiang Rui12,Tang Dewen12,Yang Chen12,Wang Yanli12,Zhang Lin3,Lei Ming4

Affiliation:

1. School of Mechanical Engineering, University of South China, Hengyang 421001, China

2. Hunan Provincial Key Laboratory of Emergency Safety Technology and Equipment for Nuclear Facilities, University of South China, Hengyang 421001, China

3. Nuclear Power Institute of China, Chengdu 610213, China

4. China National Nuclear Corporation Jianzhong Nuclear Fuel Company Ltd., Yibin 644603, China

Abstract

The isothermal steam oxidation behavior of the Zr−Sn−Nb alloy at 1050 °C was studied. In this study, the oxidation weight gain of Zr−Sn−Nb samples with oxidation durations ranging from 100 s to 5000 s was calculated. The oxidation kinetic properties of the Zr−Sn−Nb alloy were obtained. The macroscopic morphology of the alloy was directly observed and compared. The microscopic surface morphology, cross-section morphology, and element content of the Zr−Sn−Nb alloy were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy disperse spectroscopy (EDS). According to the results, the cross-sectional structure of the Zr−Sn−Nb alloy consisted of ZrO2, α-Zr(O), and prior-β. During the oxidation process, its weight gain versus oxidation time curve followed a parabolic law. The thickness of the oxide layer increases. Micropores and cracks gradually appear on the oxide film. Similarly, the thicknesses of ZrO2 and α-Zr versus oxidation time were in accordance with the parabolic law.

Funder

the Key research and development project of Hunan Province

Science and technology innovation major project of Hengyang City

Key Laboratory of Nuclear Reactor System Design Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3