Different Crystallization Behavior of Amorphous ITO Film by Rapid Infrared Annealing and Conventional Furnace Annealing Technology

Author:

Li Jiaming12,Jiang Liangbao12,Li Xiaoyu12,Luo Junjie12,Liu Jiaxi12,Wang Minbo12,Yan Yue12

Affiliation:

1. Baimtec Material Co., Ltd., Beijing Institute of Aeronautical Materials, Beijing 100095, China

2. Beijing Engineering Research Center of Advanced Structural Transparencies to the Modern Traffic System, Beijing 100095, China

Abstract

An amorphous indium tin oxide (ITO) film (Ar/O2 = 80:0.5) was heated to 400 °C and maintained for 1–9 min using rapid infrared annealing (RIA) technology and conventional furnace annealing (CFA) technology. The effect of holding time on the structure, optical and electrical properties, and crystallization kinetics of ITO films, and on the mechanical properties of the chemically strengthened glass substrates, were revealed. The results show that the nucleation rate of ITO films produced by RIA is higher and the grain size is smaller than for CFA. When the RIA holding time exceeds 5 min, the sheet resistance of the ITO film is basically stable (8.75 Ω/sq). The effect of holding time on the mechanical properties of chemically strengthened glass substrates annealed using RIA technology is less than that of CFA technology. The percentage of compressive-stress decline of the strengthened glass after annealing using RIA technology is only 12–15% of that using CFA technology. For improving the optical and electrical properties of the amorphous ITO thin films, and the mechanical properties of the chemically strengthened glass substrates, RIA technology is more efficient than CFA technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3