Machining of Triangular Holes in D2 Steel by the Use of Non-Conventional Electrodes in Die-Sinking Electric Discharge Machining

Author:

Rafaqat Madiha1,Mufti Nadeem Ahmad1,Saleem Muhammad Qaiser1ORCID,Ahmed Naveed2ORCID,Rehman Ateekh Ur3,Ali Muhammad Asad1ORCID

Affiliation:

1. Department of Industrial and Manufacturing Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

2. Department of Industrial Engineering, College of Engineering and Architecture, Al-Yamamah University, Riyadh 11512, Saudi Arabia

3. Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Electric discharge machining is relatively a slow process in terms of machining time and material removal rate. The presence of overcut and the hole taper angle caused by the excessive tool wear are other challenges in the electric discharge machining die-sinking process. The areas of focus to solve these challenges in the performance of electric discharge machines include increasing the rate of material removal, decreasing the rate of tool wear, and reducing the rate of hole taper angle and overcut. Triangular cross-sectional through-holes have been produced in D2 steel through die-sinking electric discharge machining (EDM). Conventionally, the electrode with uniform triangular cross-section throughout the electrode length is used to machine triangular holes. In this study, new designs of electrodes (non-conventional designs) are employed by introducing circular relief angles. For material removal rate (MRR), tool wear rate (TWR), overcut, taper angle, and surface roughness of the machined holes, the machining performance of conventional and unconventional electrode designs is compared. A significant improvement in MRR (32.6% increase) has been achieved by using non-conventional electrode designs. Similarly, the hole quality resulted by non-conventional electrodes is way better than hole quality corresponding to conventional electrode designs, especially in terms of overcut and hole taper angle. A reduction of 20.6% in overcut and a reduction of 72.5% in taper angle can be achieved through newly designed electrodes. Finally, one electrode design has been selected (electrode with 20 degree relief angle) as the most appropriate electrode resulting in better EDM performance in terms of MRR, TWR, overcut, taper angle, and surface roughness of triangular holes.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3