Comparative Analysis of Bone Ingrowth in 3D-Printed Titanium Lattice Structures with Different Patterns

Author:

Kovács Ágnes Éva1,Csernátony Zoltán1,Csámer Loránd1ORCID,Méhes Gábor2,Szabó Dániel1,Veres Mihály3,Braun Mihály3,Harangi Balázs4ORCID,Serbán Norbert4,Zhang Lei1,Falk György5,Soósné Horváth Hajnalka1,Manó Sándor1

Affiliation:

1. Laboratory of Biomechanics, Department of Orthopaedic Surgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary

2. Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary

3. Isotoptech Private Limited Company, H-4026 Debrecen, Hungary

4. Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, H-4028 Debrecen, Hungary

5. Varinex Private Limited Company, H-1141 Budapest, Hungary

Abstract

In this study, metal 3D printing technology was used to create lattice-shaped test specimens of orthopedic implants to determine the effect of different lattice shapes on bone ingrowth. Six different lattice shapes were used: gyroid, cube, cylinder, tetrahedron, double pyramid, and Voronoi. The lattice-structured implants were produced from Ti6Al4V alloy using direct metal laser sintering 3D printing technology with an EOS M290 printer. The implants were implanted into the femoral condyles of sheep, and the animals were euthanized 8 and 12 weeks after surgery. To determine the degree of bone ingrowth for different lattice-shaped implants, mechanical, histological, and image processing tests on ground samples and optical microscopic images were performed. In the mechanical test, the force required to compress the different lattice-shaped implants and the force required for a solid implant were compared, and significant differences were found in several instances. Statistically evaluating the results of our image processing algorithm, it was found that the digitally segmented areas clearly consisted of ingrown bone tissue; this finding is also supported by the results of classical histological processing. Our main goal was realized, so the bone ingrowth efficiencies of the six lattice shapes were ranked. It was found that the gyroid, double pyramid, and cube-shaped lattice implants had the highest degree of bone tissue growth per unit time. This ranking of the three lattice shapes remained the same at both 8 and 12 weeks after euthanasia. In accordance with the study, as a side project, a new image processing algorithm was developed that proved suitable for determining the degree of bone ingrowth in lattice implants from optical microscopic images. Along with the cube lattice shape, whose high bone ingrowth values have been previously reported in many studies, it was found that the gyroid and double pyramid lattice shapes produced similarly good results.

Funder

European Union, the Government of Hungary

Hungarian National Research, Development and Innovation Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3