Lane Detection Algorithm in Curves Based on Multi-Sensor Fusion

Author:

Zhang Qiang1,Liu Jianze1ORCID,Jiang Xuedong1

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Identifying lane markings is a key technology in assisted driving and autonomous driving. The traditional sliding window lane detection algorithm has good detection performance in straight lanes and curves with small curvature, but its detection and tracking performance is poor in curves with larger curvature. Large curvature curves are common scenes in traffic roads. Therefore, in response to the problem of poor lane detection performance of traditional sliding window lane detection algorithms in large curvature curves, this article improves the traditional sliding window algorithm and proposes a sliding window lane detection calculation method, which integrates steering wheel angle sensors and binocular cameras. When a vehicle first enters a bend, the curvature of the bend is not significant. Traditional sliding window algorithms can effectively detect the lane line of the bend and provide angle input to the steering wheel, enabling the vehicle to travel along the lane line. However, as the curvature of the curve increases, traditional sliding window lane detection algorithms cannot track lane lines well. Considering that the steering wheel angle of the car does not change much during the adjacent sampling time of the video, the steering wheel angle of the previous frame can be used as input for the lane detection algorithm of the next frame. By using the steering wheel angle information, the search center of each sliding window can be predicted. If the number of white pixels within the rectangular range centered around the search center is greater than the threshold, the average of the horizontal coordinate values of these white pixels will be used as the horizontal coordinate value of the sliding window center. Otherwise, the search center will be used as the center of the sliding window. A binocular camera is used to assist in locating the position of the first sliding window. The simulation and experimental results show that compared with traditional sliding window lane detection algorithms, the improved algorithm can better recognize and track lane lines with large curvature in bends.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3