StethAid: A Digital Auscultation Platform for Pediatrics

Author:

Arjoune Youness1ORCID,Nguyen Trong N.2,Salvador Tyler1ORCID,Telluri Anha3,Schroeder Jonathan C.4,Geggel Robert L.5,May Joseph W.6,Pillai Dinesh K.4,Teach Stephen J.7,Patel Shilpa J.8ORCID,Doroshow Robin W.29,Shekhar Raj12

Affiliation:

1. Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA

2. AusculTech Dx, 2601 University Blvd West #301, Silver Spring, MD 20902, USA

3. School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA

4. Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC 20010, USA

5. Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA

6. Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA

7. Department of Pediatrics, Children’s National Hospital, Washington, DC 20010, USA

8. Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA

9. Department of Cardiology, Children’s National Hospital, Washington, DC 20010, USA

Abstract

(1) Background: Mastery of auscultation can be challenging for many healthcare providers. Artificial intelligence (AI)-powered digital support is emerging as an aid to assist with the interpretation of auscultated sounds. A few AI-augmented digital stethoscopes exist but none are dedicated to pediatrics. Our goal was to develop a digital auscultation platform for pediatric medicine. (2) Methods: We developed StethAid—a digital platform for artificial intelligence-assisted auscultation and telehealth in pediatrics—that consists of a wireless digital stethoscope, mobile applications, customized patient-provider portals, and deep learning algorithms. To validate the StethAid platform, we characterized our stethoscope and used the platform in two clinical applications: (1) Still’s murmur identification and (2) wheeze detection. The platform has been deployed in four children’s medical centers to build the first and largest pediatric cardiopulmonary datasets, to our knowledge. We have trained and tested deep-learning models using these datasets. (3) Results: The frequency response of the StethAid stethoscope was comparable to those of the commercially available Eko Core, Thinklabs One, and Littman 3200 stethoscopes. The labels provided by our expert physician offline were in concordance with the labels of providers at the bedside using their acoustic stethoscopes for 79.3% of lungs cases and 98.3% of heart cases. Our deep learning algorithms achieved high sensitivity and specificity for both Still’s murmur identification (sensitivity of 91.9% and specificity of 92.6%) and wheeze detection (sensitivity of 83.7% and specificity of 84.4%). (4) Conclusions: Our team has created a technically and clinically validated pediatric digital AI-enabled auscultation platform. Use of our platform could improve efficacy and efficiency of clinical care for pediatric patients, reduce parental anxiety, and result in cost savings.

Funder

NIH

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3