Self-Assembled Supramolecular Micelles Based on Multiple Hydrogen Bonding Motifs for the Encapsulation and Release of Fullerene

Author:

Huang Cheng-WeiORCID,Chang Ya-Ying,Cheng Chih-ChiaORCID,Hung Meng-Ting,Mohamed Mohamed GamalORCID

Abstract

Living creatures involve several defense mechanisms, such as protecting enzymes to protect organs and cells from the invasion of free radicals. Developing antioxidant molecules and delivery systems to working with enzymes is vital. In this study, a supramolecular polymer PNI-U-DPy was used to encapsulate C60, a well-known antioxidant that is hard to dissolve or disperse in the aqueous media. PNI-U-DPy exhibits characteristics similar to PNIPAM but could form micelles even when the environment temperature is lower than its LCST. The U-DPy moieties could utilize their strong complementary hydrogen bonding–interaction to create a physically crosslinked network within PNIPAM micelles, thus adjusting its LCST to a value near the physiological temperature. Morphological studies suggested that C60 could be effectively loaded into PNI-U-DPy micelles with a high loading capacity (29.12%), and the resulting complex PNI-C60 is stable and remains temperature responsive. A series of measurements under variable temperatures was carried out and showed that a controlled release process proceeded. Furthermore, PNI-C60 exhibits hydroxyl radicals scavenging abilities at a low dosage and could even be adjusted by temperature. It can be admitted that the micelle system can be a valuable alternative for radical scavengers and may be delivered to the desired position with good dispersibility and thermo-responsivity. It is beneficial to the search progress of scientists for drug delivery systems for chemotherapeutic treatments and biomedical applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3