Structural Characterization and Optimization of a Miconazole Oral Gel

Author:

Pintea Andrada1,Vlad Robert-Alexandru1ORCID,Antonoaea Paula1,Rédai Emöke1,Todoran Nicoleta1ORCID,Barabás Enikő-Csilla23,Ciurba Adriana1

Affiliation:

1. Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania

2. Cellular Biology and Microbiology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania

3. Department of Laboratory Medicine, Mures, County Hospital, 540136 Targu Mures, Romania

Abstract

The development of semisolid formulations, gels in particular, has raised the attention of scientists more and more over the last decades. Because of their biocompatibility, hydrophilic nature, and capacity of absorbing large quantities of water, hydrogels are still one of the most promising pharmaceutical formulations in the pharmaceutical industry. The purpose of this study is to develop an optimal formulation capable of incorporating a water-poorly soluble active ingredient such as miconazole used in the treatment of fungal infections with Candida albicans and Candida parapsilosis. A D-optimal design was applied to study the relationship between the formulation parameter and the gel characteristics. The independent parameters used in this study were the Carbopol 940 concentration (the polymer used to obtain the gel matrix), the sodium hydroxide amount, and the presence/absence of miconazole. Ten different dependent parameters (Y1–Y10) were evaluated (penetrometry, spreadability, viscosity, and tangential tension at 1 and 11 levels of speed whilst destructuring and during the reorganization of the gel matrix). The consistency of the gels ranged from 23.2 mm (GO2) to 29.6 mm (GM5). The least spreadable gel was GO7 (1384 mm2), whilst the gel that presented the best spreadability was GO1 (3525 mm2). The viscosity and the tangential stress at the selected levels (1 and 11) varied due to the different compositions of the proposed gels. The gels were also tested for drug content and antifungal activity. All determinations had satisfying results; the drug content was within limits accepted by Ph. Eur. 10 and all formulations containing miconazole exhibited antifungal activity. An optimal formulation with miconazole was attained, consisting of 0.84% Carbopol 940 and 0.32% sodium hydroxide.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference60 articles.

1. A Tutorial for Developing a Topical Cream Formulation Based on the Quality by Design Approach;Veiga;J. Pharm. Sci.,2018

2. Transdermal drug delivery and cutaneous metabolism;Guy;Xenobiotica,1987

3. A science based approach to topical drug classification system (TCS);Shah;Int. J. Pharm.,2015

4. Council of Europ (2021). European Pharmacopoeia, Council f Europ. [10th ed.].

5. An update of the defensive barrier function of skin;Lee;Yonsei Med. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3