Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries

Author:

Zou Junyan,Ben Teng

Abstract

The application of rechargeable lithium batteries involves all aspects of our daily life, such as new energy vehicles, computers, watches and other electronic mobile devices, so it is becoming more and more important in contemporary society. However, commercial liquid rechargeable lithium batteries have safety hazards such as leakage or explosion, all-solid-state lithium rechargeable lithium batteries will become the best alternatives. But the biggest challenge we face at present is the large solid-solid interface contact resistance between the solid electrolyte and the electrode as well as the low ionic conductivity of the solid electrolyte. Due to the large relative molecular mass, polymers usually exhibit solid or gel state with good mechanical strength. The intermolecules are connected by covalent bonds, so that the chemical and physical stability, corrosion resistance, high temperature resistance and fire resistance are good. Many researchers have found that polymers play an important role in improving the performance of all-solid-state lithium rechargeable batteries. This review mainly describes the application of polymers in the fields of electrodes, electrolytes, electrolyte-electrode contact interfaces, and electrode binders in all-solid-state lithium rechargeable batteries, and how to improve battery performance. This review mainly introduces the recent applications of polymers in solid-state lithium battery electrodes, electrolytes, electrode binders, etc., and describes the performance of emerging porous polymer materials and materials based on traditional polymers in solid-state lithium batteries. The comparative analysis shows the application advantages and disadvantages of the emerging porous polymer materials in this field which provides valuable reference information for further development.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

National Key R&D Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3