Abstract
Gelatin and its derivatives contain cell adhesion moieties as well as sites that enable proteolytic degradation, thus allowing cellular proliferation and migration. The processing of gelatin to its derivatives and/or gelatin-containing products is challenged by its gelation below 30 ∘C. In this study, a novel strategy was developed for the dissolution and subsequent modification of gelatin to its derivative gelatin-methacryloyl (GelMA). This approach was based on the presence of urea in the buffer media, which enabled the processing at room temperature, i.e., lower than the sol–gel transition point of the gelatin solutions. The degree of functionalization was controlled by the ratio of reactant volume to the gelatin concentration. Hydrogels with tailored mechanical properties were produced by variations of the GelMA concentration and its degree of functionalization. Moreover, the biocompatibility of hydrogels was assessed and compared to hydrogels formulated with GelMA produced by the conventional method. NIH 3T3 fibroblasts were seeded onto hydrogels and the viability showed no difference from the control after a three-day incubation period.
Funder
German Federal Ministry of Education and Research
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献