New Class of Polymer Materials—Quasi-Nematic Colloidal Particle Self-Assemblies: The Case of Assemblies of Prolate Spheroidal Poly(Styrene/Polyglycidol) Particles

Author:

Mickiewicz DamianORCID,Gadzinowski MariuszORCID,Makowski TomaszORCID,Szymański WitoldORCID,Slomkowski StanislawORCID,Basinska TeresaORCID

Abstract

Assemblies of colloidal polymer particles find various applications in many advanced technologies. However, for every type of application, assemblies with properly tailored properties are needed. Until now, attention has been concentrated on the assemblies composed of spherical particles arranged into so-called perfect colloidal crystals and on complex materials containing mixtures of crystal and disordered phases. However, new opportunities are opened by using assemblies of spheroidal particles. In such assemblies, the particles, in addition to the three positional have three angular degrees of freedom. Here, the preparation of 3D assemblies of reference microspheres and prolate spheroidal poly(styrene/polyglycidol) microparticles by deposition from water and water/ethanol media on silicon substrates is reported. The particles have the same polystyrene/polyglycidol composition and the same volumes but differ with respect to their aspect ratio (AR) ranged from 1 to 8.5. SEM microphotographs reveal that particles in the assembly top layers are arranged into the quasi-nematic structures and that the quality of their orientation in the same direction increase with increasing AR. Nano- and microindentation studies demonstrate that interactions of sharp and flat tips with arrays of spheroidal particles lead to different types of particle deformations.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3