4-Amino-TEMPO-Immobilized Polymer Monolith: Preparations, and Recycling Performance of Catalyst for Alcohol Oxidation

Author:

Imoto Tomoki,Matsumoto Hikaru,Nonaka Seiya,Shichijo Keita,Nagao Masanori,Shimakoshi Hisashi,Hoshino Yu,Miura YoshikoORCID

Abstract

Continuous flow reactors with immobilized catalysts are in great demand in various industries, to achieve easy separation, regeneration, and recycling of catalysts from products. Oxidation of alcohols with 4-amino-TEMPO-immobilized monolith catalyst was investigated in batch and continuous flow systems. The polymer monoliths were prepared by polymerization-induced phase separation using styrene derivatives, and 4-amino-TEMPO was immobilized on the polymer monolith with a flow reaction. The prepared 4-amino-TEMPO-immobilized monoliths showed high permeability, due to their high porosity. In batch oxidation, the reaction rate of 4-amino-TEMPO-immobilized monolith varied with stirring. In flow oxidation, the eluent permeated without clogging, and efficient flow oxidation was possible with residence times of 2–8 min. In the recycling test of the flow oxidation reaction, the catalyst could be used at least six times without catalyst deactivation.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3