Abstract
Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on the compressive behavior of concrete cylinders confined by a novel hybrid fiber-reinforced polymer (HFRP) spiral. Nine types, forming a total of 27 confined or non-confined concrete cylinders, were subjected to an axial compressive-loading test. Concrete cylinders confined either with different spiral types or different spiral spacings were comparatively studied in the experiment. The results showed that the compressive failure modes and the stress–strain relationships of the HFRP-spiral-confined cylinders were similar to those of basalt-fiber-reinforced polymer (BFRP)-spiral-confined cylinders. The actual fracture strain of the HFRP spiral (tested as a single rod) was larger than that of the corresponding carbon-fiber-reinforced polymer (CFRP) bar, indicating the advantageous composite effect of the HFRP spiral. The maximum strain of the HFRP spiral reached over 70% of its ultimate strain in the cylinders compared to the BFRP spiral, which only reached 50%. Most of the existing models overestimated the ultimate stress and strain of the HFRP-spiral-confined cylinders. Wu’s model was proved to be the most accurate model, yet proper modification was required for predicting the peak strain of the HFRP-confined cylinders.
Funder
National Natural Science Foundation of China
Innovation and Entrepreneurship Project of College Students of China
Foundation Research Project of Jiangsu Province
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献