A Salt-Resistant Sodium Carboxymethyl Cellulose Modified by the Heterogeneous Process of Oleate Amide Quaternary Ammonium Salt

Author:

Jia Zhenfu,Zuo ChengweiORCID,Cai Huishan,Li Xiaojiang,Su Xiaodong,Yin Jierui,Zhang Wenlong

Abstract

In this study, hydrophobic quaternary ammonium intermediate was synthesized by epichlorohydrin (ECH) and oleamide propyl dimethyl tertiary amine (PKO). Sodium carboxymethylcellulose (CMC) was chemically modified by introducing a large number of hydrophobic quaternary ammonium branched chains to improve CMC’s salt resistance, thickening ability, and solubility. The quaternary ammonium salt structure can partially offset the compression double-layer effect of linear polymers in a low-price salt ion solution, which makes CMC more stretchable and helps it obtain a higher viscosity and greater drag-reduction performance. The experiment was mainly divided into three parts: Firstly, we performed an epichlorohydrin and oleic acid PKO reaction, generating an oleic acid chain quaternary ammonium chlorine atom intermediate. Secondly, the etherification reaction between intermediate –Cl and –OH groups of CMC was completed. Finally, the modified CMC was characterized by IR, SEM, and XPS, and the viscosity and the drag-reduction rate were evaluated. After CMC and the intermediate were reacted at a mass ratio of 9:1.8 at 80 °C for 5 h, the new CMC with enhanced thickening ability, salt resistance, and drag-reduction performance was obtained. We found that the apparent viscosity increased by 11%, the drag reduction rate increased by 3% on average, and the dissolution rate was also significantly accelerated, which was ascribed to the introduction of quaternary ammonium cation. Moreover, the oleic acid amide chain increased the repulsive force of the CMC chain to low-priced metal cations in solution and intermolecular repulsive force, which is beneficial to increase the viscosity, salt resistance, and drag-reduction performance.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference27 articles.

1. Review on Key Technologies of shale gas Exploration and Development;Explor. Eng. Geotech. Drill. Excav. Eng.,2013

2. How hydrofractures become arrested;Terra Nova,2001

3. Matrix Acidizing;Pet. Prod. Eng.,2007

4. Palisch, T.T., Vincent, M., and Handren, P.J. (2008, January 21–24). Slickwater Fracturing: Food for Thought. Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA.

5. Recent advances in Cellulose and its derivatives for oilfield applications;Carbohydr. Polym.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3