Seismic Performance of Recycled Aggregate Geopolymer Concrete-Filled Double Skin Tubular Columns with Internal Steel and External FRP Tube

Author:

Alashker Yasser,Raza AliORCID

Abstract

The large production of cement is resulting in a high-carbon footprint, which is essential to minimize for sustainable concrete construction. Moreover, the large quantity of recycled coarse aggregate (RCA) from the demolition of old concrete structures is creating problems for landfill and disposal. The primary goal of this study is to investigate the seismic efficiency of innovative fiber-reinforced polymer (FRP)-recycled aggregate geopolymer concrete (RAGC) steel-tubed columns (FGSTCs) with an internal steel tube (STT), an external glass-FRP tube (GLT), and RAGC located between the two-tubed components to develop a serviceable structural element. To study their seismic functioning under axial load and lateral repeated load, five FGSTC specimens were manufactured and analyzed under quasi-static loads. The influence of three variables on the performance of FGSTC specimens, consisting of STT reinforcing ratio, compression ratio, and recycled coarse aggregate (RCA) replacement ratio, was investigated in this investigation. The produced specimens’ ductility, hysteretic loops, strain distribution, skeleton curves, stiffness functioning, energy capacity dissipation, damaging functioning, and strength loss were all assessed and discussed. The results of this investigation revealed that percentage substitution of RCA had a minor impact on the seismic functioning of FGSTCs; however, the compression-load ratio depicted a substantial impact. The energy loss of the FGSTCs was 24.5% higher than that of their natural aggregate equivalents. FGSTCs may have a 16.9% lower cumulative failure rate than their natural aggregate counterparts.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference61 articles.

1. Quantified sustainability of recycled concrete aggregates;McGinnis;Mag. Concr. Res.,2017

2. Influence of construction and demolition waste management on the environmental impact of buildings;Coelho;Waste Manag.,2012

3. Recycled coarse aggregates from precast plant and building demolitions: Environmental and economic modeling through stochastic simulations;Arroyo;J. Clean. Prod.,2018

4. A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint;Xiao;J. Clean. Prod.,2018

5. Fresh-state performance of recycled aggregate con-crete: A review;Silva;Constr. Build. Mater.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3