Abstract
In this study, polyolefin elastomer (POE) was blended with a chemically modified hydrocarbon resin (m-HCR), which was modified through a simple radical grafting reaction using γ-methacryloxypropyl trimethoxy silane (MTS) as an adhesion promotor to the glass surface, to design an adhesion-enhanced polyolefin encapsulant material for photovoltaic modules. Its chemical modification was confirmed by 1H and 29Si NMR and FT-IR. Interestingly, the POE blends with the m-HCR showed that the melting peak temperature (Tm) was not changed. However, Tm shifted to lower values with increasing m-HCR content after crosslinking. Additionally, the mechanical properties did not significantly differ with increasing m-HCR content. Meanwhile, with increasing m-HCR content in the POE blend, the peel strength increased linearly without sacrificing their transmittance. The test photovoltaic modules comprising the crosslinked POE blend encapsulants showed little difference in the electrical performance after manufacturing. After 1000 h of damp-heat exposure, no significant power loss was observed.
Funder
High Permeability Thermoplastic elastomer for the solar module
Development of High-elastic Binder for Fire Safety Paint and Filler Technology for Controlling Thermal Diffusion
the Ministry of Trade, Industry, and Energy
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献