A Flexible Piezoelectric Device for Frequency Sensing from PVDF/SWCNT Composite Fibers

Author:

Choi SejinORCID,Lim Jihwan,Park Hansol,Kim Han SeongORCID

Abstract

Polymer piezoelectric devices have been widely studied as sensors, energy harvesters, and generators with flexible and simple processes. Flexible piezoelectric devices are sensitive to external stimuli and are attracting attention because of their potential and usefulness as acoustic sensors. In this regard, the frequency sensing of sound must be studied to use flexible piezoelectric devices as sensors. In this study, a flexible piezoelectric device composed of a polymer and an electrode was successfully fabricated. Polyvinylidene fluoride, the active layer of the piezoelectric device, was prepared by electrospinning, and electrodes were formed by dip−coating in a prepared single−walled carbon nanotube dispersion. The output voltage of the external sound was matched with the input frequency through a fast Fourier transform, and frequency matching was successfully performed, even with mechanical stimulation. In a high−frequency test, the piezoelectric effect and frequency domain peak started to decrease sharply at 300 Hz, and the limit of the piezoelectric effect and sensing was observed from 800 Hz. The results of this study suggest a method for developing flexible piezoelectric-fiber frequency sensors based on piezoelectric devices for acoustic sensor systems.

Funder

Ministry of Trade, Industry & Energy and a Pusan National University Research Grant

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3