Mass Customization of Polylactic Acid (PLA) Parts via a Hybrid Manufacturing Process

Author:

Gong KeORCID,Liu Handai,Huang Cheng,Jiang Qinyu,Xu Han,Cao Zhi,Fuenmayor EvertORCID,Major IanORCID

Abstract

Mass customization is the development of items tailored to specific customers, but produced at low unit cost in high-volume. In this context, hybrid manufacturing (HM) combines fused deposition modeling (FDM) and injection molding (IM) to fabricate a single personalized part with minimum manufacturing cost. In this technique, inserts with different physical features are first FDM-fabricated and then IM-overmolded. This study investigated the effect of hybrid FDM-IM production technology, FDM insert geometry on mechanical properties, and micro-structural evolution of Polylactic Acid (PLA) samples. The findings indicated a comparable tensile properties of FDM-IM samples (68.38 MPa) to IM batch (68.95 MPa), emphasizing the potential of HM in the manufacturing industry. Maximum tensile stress of FDM-IM specimens shows an upward trend due to the increased infill density of preforms. In addition, overmolding interface direction results in a big gap for the maximum tensile strengths between half-length series specimens (12.99 MPa to 19.09 MPa) and half-thickness series specimens (53.83 MPa to 59.92 MPa). Furthermore, four joint configurations resulted in different mechanical performances of finished specimens, in which the female cube sample exhibits the highest tensile stress (68.38 MPa), while the batch with male T joint shows a lower value in maximum tensile strength (59.51 MPa), exhibiting a similar tensile performance with the half-thickness 75% batch without joint configuration. This study lays the groundwork for using HM to produce bespoke and mechanically improved parts over FDM alone.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3