A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment

Author:

Roohi Zahra,Mighri Frej,Zhang ZeORCID

Abstract

Polypyrrole (PPy) is one of the attractive conducting polymers that have been investigated as energy storage materials in devices like supercapacitors. Previously, we have reported a free-standing soft PPy membrane synthesized through interfacial polymerization in which methyl orange (MO) and ferric chloride were used as nano template and oxidant. In this work, we report that the presence of MO and the treatment of the PPy–MO membrane with sulfuric acid can dramatically increase the specific capacitance of the membrane. The properties of the membranes were evaluated using scanning electron microscope (SEM) for morphology, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) for chemistry, thermogravimetric analysis (TGA) for thermal stability, and cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) for electrochemical activity. It was found that the areal specific capacitance of the PPy membrane increased from 2226 mF/cm2 to 6417 mF/cm2 and the charge transfer resistivity decreased from about 17 Ω to 3 Ω between 10,000 and 0.1 Hz due to the presence of MO and the acid treatment. It is likely that the superposition effect of MO and acid treatment helped the charge transfer process and consequently enhanced the charge storage performance and specific capacitance of the PPy membrane.

Funder

Natural Sciences and Engineering Research Council of Canada Discovery

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

1. Conducting Polymers;Awuzie;Mater. Today Proc.,2022

2. Nanostructured conductive polymers for advanced energy storage;Shi;Chem. Soc. Rev.,2015

3. Light-emitting diodes based on conjugated polymers;Burroughes;Nature,1990

4. In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors;Zhang;Electrochim. Acta,2019

5. Research progress on conducting polymer based supercapacitor electrode materials;Meng;Nano Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3