A Novel Diamine Containing Ester and Diphenylethane Groups for Colorless Polyimide with a Low Dielectric Constant and Low Water Absorption

Author:

Lee Jun SeokORCID,Yan Yong-Zhu,Park Sung Soo,Ahn Suk-kyun,Ha Chang-SikORCID

Abstract

In this study, a novel diamine monomer containing ester and phenyl moieties, 1,2-diphenylethane-1,2-diyl bis(4-aminobenzoate) (1,2-DPEDBA), was synthesized through a three-step reaction. Using this diamine, a novel polyimide (PI) film was prepared with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) as a counter dianhydride through a typical two-step chemical imidization. For comparison, poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA PI) was also synthesized via thermal imidization. The resulting 6-FDA-DPEDBA PI film was not only soluble in common polar solvents with high boiling points, such as N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF), but also soluble in common low-boiling-point polar solvents, such as chloroform (CHCl3) and dichloromethane (CH2Cl2), at room temperature. The resulting novel PI showed a 5% weight loss temperature (T5d) at 360 °C under a nitrogen atmosphere. The resulting PI film was colorless and transparent with a transmittance of 87.1% in the visible light region ranging from 400 to 760 nm. The water absorption of the novel PI film was of 1.78%. The PI film also possessed a good moisture barrier and hydrophobicity. Furthermore, the resulting PI film displayed a low dielectric constant of 2.17 at 106 Hz at room temperature. In conclusion, the novel PI film exhibited much better optical transparency, lower moisture absorption, and a lower dielectric constant as well as better solubility than the PMDA-ODA PI film, which is insoluble in any solvent, although its thermal stability is not better than that of PMDA-ODA PI.

Funder

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3