Wave Dispersion Behaviors of Multi-Scale CNT/Glass Fiber/Polymer Nanocomposite Laminated Plates

Author:

Ebrahimi Farzad,Enferadi AlirezaORCID,Dabbagh Ali

Abstract

In this paper, wave propagation in multi-scale hybrid glass fiber (GF)/carbon nanotube (CNT)/polymer nanocomposite plates is studied for the first time by means of refined higher-order plate theory. The hybrid nanocomposite consists of CNTs and glass fibers (GF) as reinforcing components distributed within a polymeric matrix. A hierarchical micromechanical approach is used to predict the effective mechanical properties of the hybrid nanocomposite, including the three-dimensional (3D) Mori-Tanaka method and the rule of mixture. Moreover, a refined-type higher-order shear deformation theory (HSDT) is implemented to take into account the influence of the shear deformation on the motion equations of the system. Then, the governing equations are achieved on the basis of the energy-based Hamilton’s principle. Finally, the derived equations will be solved analytically for the purpose of extracting the natural frequency of the continuous system. A set of numerical examples are provided to cover the effects of various parameters on the wave dispersion characteristics of the plate. It can be declared that the hybrid nanocomposite system can achieve higher wave frequencies compared with other types of composite structures. Additionally, it is found that the selection of the lay-ups and length-to-diameter ratio plays a significant role in the determination of the sandwich plate’s acoustic response.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3