Abstract
An elastomeric class of flexible skin-based polymorphing wings changes its configuration to maximize performance at radically different flight conditions. One of the key design challenges for such an aircraft technology is the multiaxial deformation characterization and modeling of nonlinear elastomeric skins of polymorphing wings. In the current study, three elastomeric materials, Latex, Oppo, and Ecoflex, are experimentally characterized and modeled under all possible deformation modes such as uniaxial, pure shear, biaxial, and equibiaxial relevant for flexible skin-based morphing wing applications. Additionally, a novel material model with four material constants is proposed to model the considered elastomers-based morphing wings keeping all the material parameters constant for all the possible deformation modes. The present experimental and theoretical study provides a concise comparative study of the three elastomers used in the morphing wings tested in all possible deformation modes.
Subject
Polymers and Plastics,General Chemistry
Reference53 articles.
1. A review of morphing aircraft;J. Intell. Mater. Syst. Struct.,2011
2. A review of avian-inspired morphing for UAV flight control;Prog. Aerosp. Sci.,2022
3. A review of modelling and analysis of morphing wings;Prog. Aerosp. Sci.,2018
4. Aeroelasticity of compliant span morphing wings;Smart Mater. Struct.,2018
5. Mechanical properties of shape memory polymers for morphing aircraft applications;Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies,2005
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献