Local Piezoelectric Response of Polymer/Ceramic Nanocomposite Fibers

Author:

Magnani AuroraORCID,Capaccioli Simone,Azimi Bahareh,Danti SerenaORCID,Labardi MassimilianoORCID

Abstract

Effective converse piezoelectric coefficient (d33,eff) mapping of poly(vinylidene fluoride) (PVDF) nanofibers with ceramic BaTiO3 nanoparticle inclusions obtained by electrospinning was carried out by piezoresponse force microscopy (PFM) in a peculiar dynamic mode, namely constant-excitation frequency-modulation (CE-FM), particularly suitable for the analysis of compliant materials. Mapping of single nanocomposite fibers was carried out to demonstrate the ability of CE-FM-PFM to investigate the nanostructure of semicrystalline polymers well above their glass transition temperature, such as PVDF, by revealing the distribution of piezoelectric activity of the nanofiber, as well as of the embedded nanoparticles employed. A decreased piezoelectric activity at the nanoparticle site compared to the polymeric fiber was found. This evidence can be rationalized in terms of a tradeoff between the dielectric constants and piezoelectric coefficients of the component materials, as well as on the mutual orientation of polar axes.

Funder

Office of Naval Research Global

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3