Effect of Recycling on the Mechanical, Thermal and Rheological Properties of Polypropylene/Carbon Nanotube Composites

Author:

Bata Attila,Nagy Dorottya,Weltsch Zoltán

Abstract

In this research the effect of physical recycling on the mechanical, thermal, and rheological properties of polypropylene (PP)/multiwalled carbon nanotube (MWCNT) was investigated. After melt homogenization by extrusion, specimens were injection moulded with 0.1 and 0.5 wt% MWCNT content. The recycling process was simulated by multiple grinding and re-moulding, then we compared the behavior of original and recycled PP/MWCNT composites. Differential scanning calorimetry (DSC) measurements proved that MWCNT had double the effect on the morphology of the PP matrix: on the one hand nucleating effect can be detected because 0.5 wt% MWCNT increased the onset temperature of crystallization by 10 °C, compared to the basic PP material; on the other hand, the crystalline fraction of the recycled composite materials decreased compared to the original PP material with the same MWCNT content. This resulted in a slight decrease in strength and stiffness but an increase in elongation at break. However, compared to the original unreinforced PP reference, even the recycled materials have better properties. The mechanical test results showed that recycled PP/MWCNT 0.5 wt% increased the elastic modulus (~15%) and decreased the tensile strain at yield (~10%). However, in the values of tensile stress at yield, relevant difference was not found. It was also shown by oscillatory rheometry that MWCNT had a significant effect on the rheological properties (storage and loss modulus, complex viscosity) of PP compounds in a wide temperature range (190–230 °C).

Funder

Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3