On Crashworthiness and Energy-Absorbing Mechanisms of Thick CFRP Structures for Railway Vehicles

Author:

Chen Dongdong,Sun Xiaoyu,Li Benhuai,Liu Yanwen,Zhu Tao,Xiao Shoune

Abstract

This study aims to provide important guidelines for the crashworthiness design of composite energy-absorbing structures, especially railway vehicles. An experimental and numerical investigation was carried out to explore the crushing response of circular composite tubes reinforced with plain woven carbon fiber-reinforced polymers (CFRP). Quasi-static and dynamic axial crushing tests were performed on CFRP tubes with an inner diameter of 100 mm and a nominal wall thickness of 12 mm. Experimental results showed that increasing loading velocity led to a 21.8% reduction in specific energy absorption (from 99.7 kJ/kg to 78.7 kJ/kg) but had negligible influence on failure modes. Finite element models were also established and validated against the experimental results using ABAQUS/Explicit software. The effects of several different parameters such as the number of shell layers, friction coefficient, and interface properties on the simulated results, were also investigated and analyzed. A small variation in these parameters could change the total energy absorption of CFRP tubes. The comparisons between the predicted and experimental results indicated that a finite element model with 10 shell layers could effectively replicate the crushing response. In addition, the simulated results indicated that the damage of tubal wall materials dominated the major energy-absorbing mechanisms of CFRP tubes under quasi-static loads, which was 69.1% of the total energy. The energy dissipated by friction effects between the loading platen and the crushed fronds was 24.1% of the total energy. The increase in the loading velocity led to a decrease in the composite damage energy except for friction energy, resulting in a decrease in the total energy absorption.

Funder

State Key Laboratory of Traction Power

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Sichuan, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3