Author:
Chen Dongdong,Sun Xiaoyu,Li Benhuai,Liu Yanwen,Zhu Tao,Xiao Shoune
Abstract
This study aims to provide important guidelines for the crashworthiness design of composite energy-absorbing structures, especially railway vehicles. An experimental and numerical investigation was carried out to explore the crushing response of circular composite tubes reinforced with plain woven carbon fiber-reinforced polymers (CFRP). Quasi-static and dynamic axial crushing tests were performed on CFRP tubes with an inner diameter of 100 mm and a nominal wall thickness of 12 mm. Experimental results showed that increasing loading velocity led to a 21.8% reduction in specific energy absorption (from 99.7 kJ/kg to 78.7 kJ/kg) but had negligible influence on failure modes. Finite element models were also established and validated against the experimental results using ABAQUS/Explicit software. The effects of several different parameters such as the number of shell layers, friction coefficient, and interface properties on the simulated results, were also investigated and analyzed. A small variation in these parameters could change the total energy absorption of CFRP tubes. The comparisons between the predicted and experimental results indicated that a finite element model with 10 shell layers could effectively replicate the crushing response. In addition, the simulated results indicated that the damage of tubal wall materials dominated the major energy-absorbing mechanisms of CFRP tubes under quasi-static loads, which was 69.1% of the total energy. The energy dissipated by friction effects between the loading platen and the crushed fronds was 24.1% of the total energy. The increase in the loading velocity led to a decrease in the composite damage energy except for friction energy, resulting in a decrease in the total energy absorption.
Funder
State Key Laboratory of Traction Power
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Sichuan, China
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献