Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo

Author:

Bai Yifeng,Wang Wenqing,Zhang Yongyue,Wang Xiangwei,Wang XinzhouORCID,Shi JiangtaoORCID

Abstract

Bamboo has become an important kind of fibrous raw material in the world due to its fast-growing property and abundance of natural fiber. During the purification and utilization of bamboo fiber, the removal of lignin is vital and it is affected by the chemical treatment system and drying method. In this paper, the effects of three different delignification chemical systems and three drying methods (air drying, drying and freeze drying) on the physical and chemical properties of bamboo fiber were comparatively studied. The results prove that all three delignification techniques can effectively remove lignin from wood, and by utilizing peroxyformic acid and alkaline sodium sulfite, hemicellulose can be removed to a certain extent. With the selective removal of amorphous hemicellulose and lignin and the hydrolysis of cellulose molecular chains in amorphous regions, all three treatments contributed to an increase in the relative crystallinity of cellulose (ranging from 55% to 60%). Moreover, it was found that the drying methods exerted a certain influence on the mechanical properties of fiber. For instance, drying or air drying would improve the tensile strength of fiber significantly, approximately 2–3.5 times that of original bamboo fiber, and the tensile strength of the drying group reached 850–890 MPa. In addition, the alkaline sodium sulfite treatment had little effect on the thermal stability of bamboo fiber, resulting in high thermal stability of the prepared samples, and the residual mass reached 25–37%. On the contrary, the acetic acid/hydrogen peroxide method exerted great influence on the thermal stability of bamboo fiber, giving rise to a relatively poor thermal stability of prepared fibers, and the residual mass was only about 15%. Among the three drying methods, samples under air drying treatment had the highest residual mass, while those under freeze drying had the lowest. To summarize, the alkaline sodium sulfite method is more suitable for preparing bamboo fiber with higher tensile strength and thermal stability.

Funder

Forestry Science and Technology Innovation and Promotion Project of Jiangsu Province of China

Qing Lan Project of Jiangsu Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3