Pyrolysis of Denim Jeans Waste: Pyrolytic Product Modification by the Addition of Sodium Carbonate

Author:

Joo JungheeORCID,Choi Heeyoung,Lin Kun-Yi Andrew,Lee JechanORCID

Abstract

Quickly changing fashion trends generate tremendous amounts of textile waste globally. The inhomogeneity and complicated nature of textile waste make its recycling challenging. Hence, it is urgent to develop a feasible method to extract value from textile waste. Pyrolysis is an effective waste-to-energy option to processing waste feedstocks having an inhomogeneous and complicated nature. Herein, pyrolysis of denim jeans waste (DJW; a textile waste surrogate) was performed in a continuous flow pyrolyser. The effects of adding sodium carbonate (Na2CO3; feedstock/Na2CO3 = 10, weight basis) to the DJW pyrolysis on the yield and composition of pyrolysates were explored. For the DJW pyrolysis, using Na2CO3 as an additive increased the yields of gas and solid phase pyrolysates and decreased the yield of liquid phase pyrolysate. The highest yield of the gas phase pyrolysate was 34.1 wt% at 800 °C in the presence of Na2CO3. The addition of Na2CO3 could increase the contents of combustible gases such as H2 and CO in the gas phase pyrolysate in comparison with the DJW pyrolysis without Na2CO3. The maximum yield of the liquid phase pyrolysate obtained with Na2CO3 was 62.5 wt% at 400 °C. The composition of the liquid phase pyrolysate indicated that the Na2CO3 additive decreased the contents of organic acids, which potentially improve its fuel property by reducing acid value. The results indicated that Na2CO3 can be a potential additive to pyrolysis to enhance energy recovery from DJW.

Funder

National Research Foundation of Korea

Korea Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference25 articles.

1. US EPA (2020). Facts and Figures about Materials, Waste and Recycling—Textiles: Material-Specific Data.

2. Developing a compression moulded thermal insulation panel using postindustrial textile waste;Waste Manag.,2018

3. Sustainable transformation in modest fashion through “RPET technology” and “Dry-Dye” process, using recycled PET plastic;Int. J. Recent Technol. Eng.,2019

4. EEA (2021). Plastic in Textiles: Towards a Circular Economy for Synthetic Textiles in Europe, European Environment Agency (EEA).

5. Chemical recycling of plastic waste via thermocatalytic routes;J. Clean. Prod.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3