Recent Advances in Biomedical Applications of Polymeric Nanoplatform Assisted with Two-Photon Absorption Process

Author:

Ramasundaram Subramaniyan,Sobha Sivasangu,Saravanakumar Gurusamy,Oh Tae Hwan

Abstract

Polymers are well-recognized carriers useful for delivering therapeutic drug and imaging probes to the target specified in the defined pathophysiological site. The functional drug molecules and imaging agents were chemically attached or physically loaded in the carrier polymer matrix via cleavable spacers. Using appropriate targeting moieties, these polymeric carriers (PCs) loaded with functional molecules were designed to realize target-specific delivery at the cellular level. The biodistribution of these carriers can be tracked using imaging agents with suitable imaging techniques. The drug molecules can be released by cleaving the spacers either by endogenous stimuli (e.g., pH, redox species, glucose level and enzymes) at the targeted physiological site or exogenous stimuli (e.g., light, electrical pulses, ultrasound and magnetism). Recently, two-photon absorption (2PA)-mediated drug delivery and imaging has gained significant attention because TPA from near-infrared light (700–950 nm, NIR) renders light energy similar to the one-photon absorption from ultraviolet (UV) light. NIR has been considered biologically safe unlike UV, which is harmful to soft tissues, cells and blood vessels. In addition to the heat and reactive oxygen species generating capability of 2PA molecules, 2PA-functionalized PCs were also found to be useful for treating diseases such as cancer by photothermal and photodynamic therapies. Herein, insights attained towards the design, synthesis and biomedical applications of 2PA-activated PCs are reviewed. In particular, specific focus is provided to the imaging and drug delivery applications with a special emphasis on multi-responsive platforms.

Funder

Korean Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3