Abstract
Polarized optical microscopy (POM), scanning electron microscopy (SEM), and synchrotron microbeam wide-angle X-ray diffraction (WAXD) were used to investigate the mechanisms of periodic assemblies leading to ring-banded crystal aggregates with light-grating capacity for iridescence in poly (1,4-butylene adipate) (PBA) modulated with poly (ethylene oxide) (PEO). A critical finding is that the PBA crystal assembly on the top surface and in the interior constitutes a grating architecture, with a cross-bar pitch equaling the inter-band spacing. The inner lamellae are arranged perpendicularly to the substrate under the ridge region, where they scroll, bend, and twist 90° to branch out newly spawned lamellae to form the parallel lamellae under the valley region. The cross-hatch grating with a fixed inter-spacing in the PBA aggregated crystals is proved in this work to perfectly act as light-interference entities capable of performing iridescence functions, which can be compared to those widely seen in many of nature’s organic bio-species or inorganic minerals such as opals. This is a novel breakthrough finding for PBA or similar polymers, such as photonic crystals, especially when the crystalline morphology could be custom-made and modulated with a second constituent.
Funder
Taiwan Ministry of Science and Technology
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献