Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification

Author:

Ye Cuizhu,Pan Ziyan,Shen Yi

Abstract

In this work, we convert a plastic waste, i.e., polystyrene (PS), into a sorbent by a simple sulfonation process. The sulfonation time was optimized and the structures of the resulting sulfonated polystyrene (SPS) was characterized by field emission scanning electron microscopy, energy-dispersive X-ray and contact angle tests. The results showed that the sulfonation time of 7 h can introduce abundant sulfonic groups and preserve the self-standing structure. Additionally, the SPS has a three-dimensional porous structure and hydrophilic surface because of the presence of numerous sulfonic groups, which could serve as effective binding sites for immobilizing varying pollutants. Furthermore, as a proof-of-concept, the adsorption performance of the SPS foams was evaluated using three pollutants, namely Pb2+, lysozyme and methylene blue. The adsorption isotherms were fitted by the Langmuir and Freundlich models, while the kinetics of the adsorption processes were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. It was found that the adsorption isotherms of Pb2+ and lysozyme can be better described by the Langmuir model, leading to maximum equilibrium adsorption uptakes of 10.5 and 15.7 mg g−1 for the adsorption of Pb2+ and lysozyme, respectively. Importantly, the pollutant-saturated SPS is readily regenerated by acid washing, and the recovered sorbents exhibit outstanding cyclic performance. The abundant availability of feedstock, facile preparation and regeneration processes render the SPS foams a promising sorbent for practical applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3