Abstract
To mitigate lithium dissolution and polysulfide shuttle effect phenomena in high-energy lithium sulfur batteries (LISBs), a conductive, flexible, and easily modified polymer composite layer was applied on the anode. The polymer composite layer included polyaniline and functionalized graphite. The electrochemical behavior of LISBs was studied by galvanostatic charge/discharge tests from 1.7 to 2.8 V up to 90 cycles and via COMSOL Multiphysics simulation software. No apparent overcharge occurred during the charge state, which suggests that the shuttle effect of polysulfides was effectively prevented. The COMSOL Multiphysics simulation provided a venue for optimal prediction of the ideal concentration and properties of the polymer composite layer to be used in the LISBs. The testing and simulation results determined that the polymer composite layer diminished the amount of lithium polysulfide species and decreased the amount of dissolved lithium ions in the LISBs. In addition, the charge/discharge rate of up to 2.0 C with a cycle life of 90 cycles was achieved. The knowledge acquired in this study was important not only for the design of efficient new electrode materials, but also for understanding the effect of the polymer composite layer on the electrochemical cycle stability.
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献