Author:
Altabal Osamah,Wischke Christian
Abstract
Assessing the mechanical properties of materials is of fundamental relevance for their rational usage, but can be challenging with standard tensile testing for highly brittle polymers used, e.g., as coatings. Here, a procedure for the mechanical analysis of free-standing poly(alkyl cyanoacrylate) (PACA) films using microindentation has been explored. Rigid and transparent films from PACA with various side chain compositions were formed on top of square polymer frames by in situ polymerization. Under microscopic control, the free-standing films were analyzed using a microelectromechanical sensing system. By this procedure, decreasing Young’s moduli E for increasing PACA side chain length and flexibility were determined with strain at break εB between 0.36% for poly(ethyl cyanoacrylate) and 4.6% for poly(methoxyethyl cyanoacrylate). Based on this successful application, the applied methodology may be relevant for characterizing various coating materials, which are otherwise hard to form as thin free-standing films, and using the data, e.g., in computationally assisted design and evaluation of hybrid material devices.
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献