Abstract
As an organic−inorganic thermoelectric composite material, a flexible, reduced graphene oxide (rGO)/silver sulfide (Ag2S)/methyl cellulose (MC) film was fabricated by a two-step method. Firstly, a rGO/Ag2S composite powder was prepared by a chemical synthesis method, and then, the rGO/Ag2S/MC composite film was prepared by a combined screen printing and annealing treatment process. The rGO and rGO/Ag2S composite powders were evenly dispersed in the rGO/Ag2S/MC composite films. A power factor of 115 μW m−1 K−2 at 520 K was acquired for the rGO/Ag2S/MC composite film, which is ~958 times higher than the power factor at 360 K (0.12 μW m−1 K−2), mainly due to the significant increase in the electrical conductivity of the composite film from 0.006 S/cm to 210.18 S/cm as the test temperature raised from 360 K to 520 K. The as-prepared rGO/Ag2S/MC composite film has a good flexibility, which shows a huge potential for the application of flexible, wearable electronics.
Funder
Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning
Shanghai Innovation Action Plan Project
Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献