Physically and Chemically Stable Anion Exchange Membranes with Hydrogen-Bond Induced Ion Conducting Channels

Author:

Wei Chengpeng,Yu Weisheng,Wu Liang,Ge Xiaolin,Xu Tongwen

Abstract

Anion exchange membranes (AEMs) with desirable properties are the crucial components for numerous energy devices such as AEM fuel cells (AEMFCs), AEM water electrolyzers (AEMWEs), etc. However, the lack of suitable AEMs severely limits the performance of devices. Here, a series of physically and chemically stable AEMs have been prepared by the reaction between the alkyl bromine terminal ether-bond-free aryl backbone and the urea group-containing crosslinker. Morphology analyses confirm that the hydrogen bonding interaction between urea groups is capable of driving the ammonium cations to aggregate and further form continuous ion-conducting channels. Therefore, the resultant AEM demonstrates remarkable OH− conductivity (59.1 mS cm−1 at 30 °C and 122.9 mS cm−1 at 90 °C) despite a moderate IEC (1.77 mmol g−1). Simultaneously, due to the adoption of ether-bond-free aryl backbone and alkylene chain-modified trimethylammonium cation, the AEM possesses excellent alkaline stability (87.3% IEC retention after soaking in 1 M NaOH for 1080 h). Moreover, the prepared AEM shows desirable mechanical properties (tensile stress > 25 MPa) and dimensional stability (SR = 20.3% at 90 °C) contributed by the covalent-bond and hydrogen-bond crosslinking network structures. Moreover, the resulting AEM reaches a peak power density of 555 mW cm−2 in an alkaline H2/O2 single fuel cell at 70 °C without back pressure. This rational structural design presented here provides inspiration for the development of high-performance AEMs, which are crucial for membrane technologies.

Funder

The National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3