Influence of Viscose Fibre Geometry on the Structure–Property Relationships of High-Density Polyethylene Composites

Author:

Slapnik JanezORCID,Kraft GregorORCID,Wilhelm Thomas,Hribernik Marcel,Švab Iztok,Lucyshyn ThomasORCID,Pinter GeraldORCID

Abstract

This study investigated the influence of viscose fibre (VF) geometry on the microstructures and resulting properties of high-density polyethylene (HDPE) composites. Seven types of viscose fibres varying in cross-section shape, linear density, and length were pelletised, compounded into HDPE with a twin-screw extruder, and injection moulded. The microstructures of the composites were characterised by investigating their cross-sections and by extracting the fibres and measuring their lengths using optical microscopy (OM). The mechanical and thermal properties of the composites were characterised using differential scanning calorimetry (DSC), tensile tests, Charpy impact tests, and dynamic mechanical analysis (DMA). The composites prepared using cylindrical fibres with a linear density of 1.7 dtex exhibited the best fibre dispersion, highest orientation, and lowest fibre–fibre contact area. The decrease in the linear density of the cylindrical fibres resulted in increasingly worse dispersion and orientation, while composites containing non-cylindrical fibres exhibited a comparably larger fibre–fibre contact area. The initial fibre length of about 3 to 10 mm decreased to the mean values of 0.29 mm to 0.41 mm during processing, depending on the initial geometry. In general, cylindrical fibres exhibited a superior reinforcing effect in comparison to non-cylindrical fibres. The composites containing cylindrical fibres with a linear density of 1.7 dtex and a length of 5 mm exhibited the best reinforcing effect with an increase in tensile modulus and strength of 323% and 141%, respectively.

Funder

Republic of Slovenia, Ministry of Education, Science and Sport and European Union, European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3