Author:
Zhang Shiyang,Lu Xiaochuang,Cai Mingwei,Wang Zhi,Han Zhenjing,Chen Zhiyin,Liu Rongtao,Li Kaixin,Min Yonggang
Abstract
Polyimide (PI) membrane is an ideal gas separation material due to its advantages of high designability, good mechanical properties and easy processing; however, it has equilibrium limitations in gas selectivity and permeability. Introducing nanoparticles into polymers is an effective method to improve the gas separation performance. In this work, nano-attapulgite (ATP) functionalized with KH-550 silane coupling agent was used to prepare polyimide/ATP composite membranes by in-situ polymerization. A series of characterization and performance tests were carried out on the membranes. The obtained results suggested a significant increase in gas permeability upon increasing the ATP content. When the content of ATP was 50%, the gas permeability of H2, He, N2, O2, CH4, and CO2 reached 11.82, 12.44, 0.13, 0.84, 0.10, and 4.64 barrer, which were 126.87%, 119.40%, 160.00%, 140.00%, 150.00% and 152.17% higher than that of pure polyimide, respectively. No significant change in gas selectivity was observed. The gas permeabilities of membranes at different pressures were also investigated. The inefficient polymer chain stacking and the additional void volume at the interface between the polymer and TiO2 clusters leaded to the increase of the free volume, thus improving the permeability of the polyimide membrane. As a promising separation material, the PI/ATP composite membrane can be widely used in gas separation industry.
Funder
National Key R&D Program of China
NSFC
the Program for Guangdong Introducing Innovative and Entrepreneurial Team
Guangzhou Hongmian Project
Foshan Introducing Innovative and Entrepreneurial Teams
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献