Abstract
According to reported polymer-based magnetoelectric (ME) laminates, which generate voltage via an external magnetic field, a binder is indispensable for the adhesion between phases. However, if the binder is excluded, the ME response is expected to improve via efficient strain transfer from the magnetostrictive phase to the piezoelectric phase. Nevertheless, an understanding of the binderless state has not yet been addressed in polymer-based ME laminates. In this study, cellulose/Ni (CN) laminates were designed to obtain binderless polymer-based ME laminates. The surface properties of Ni foil desirable for the anchoring effect and the electrostatic interactions required for binderless states were determined via heat treatment of the Ni substrate. Moreover, to confirm the potential of the binderless laminate in ME applications, the ferromagnetic and ferroelectric properties of the CN laminates were recorded. Consequently, the CN laminates exhibited remnant and saturation magnetizations of 29.5 emu/g and 55.2 emu/g, respectively. Furthermore, the significantly increased remnant and saturation polarization of the CN laminates were determined to be 1.86 µC/cm2 and 0.378 µC/cm2, an increase of approximately 35-fold and 5.56-fold, respectively, compared with a neat cellulose film. The results indicate that multiferroic binderless CN laminates are excellent candidates for high-response ME applications.
Funder
Dong-A University Research Fund
Subject
Polymers and Plastics,General Chemistry