Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers

Author:

Mata Gustavo Cardoso daORCID,Morais Maria Sirlene,Oliveira Wanderley Pereira deORCID,Aguiar Mônica Lopes

Abstract

Since the SARS-CoV-2 pandemic, the interest in applying nanofibers t air filtration and personal protective equipment has grown significantly. Due to their morphological and structural properties, nanofibers have potential applications for air filtration in masks and air filters. However, most nanofiber membrane materials used for these purposes are generally non-degradable materials, which can contribute to the disposal of plastic waste into the environment. Hence, this work aims to produce polyvinyl alcohol (PVA) and chitosan (CS) biodegradable nanofibers with controlled morphology and structure via electrospinning. An experimental design was used to investigate the effects of the PVA|CS ratio and concentration on the properties of the electrospinning compositions and electrospun nanofiber mat. The electrospinning parameters were constant for all experiments: Voltage of 20 kV, a feed rate of 0.5 mL·h−1, and a distance of 10 cm between the needle and a drum collector. CS proved to be an efficient adjuvant to the PVA’s electrospinning, obtaining a wide range of nanofiber diameters. Furthermore, 6.0% PVA and 1% CS were the best compositions after optimization with the response surface methodology, with a mean fiber diameter of 204 nm. The addition of biocide agents using the optimized condition was also investigated, using surfactants, citric acid, and pure and encapsulated essential oils of Lippia sidoides. Pure oil improved the material without enlarging the nanofiber sizes compared to the other additives. The nanofiber membranes produced have the potential to be used in air filtration or wound-dressing applications where biocidal activity is needed.

Funder

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Foundation of Research Support of São Paulo State

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3