Fabrication and Conductivity of Graphite Nanosheet/Nylon 610 Nanocomposites Using Graphite Nanosheets Treated with Supercritical Water at Different Temperatures

Author:

Lim Jun-Ven,Bee Soo-Tueen,Sin Lee Tin,Ratnam Chantara Thevy,Abdul Hamid Zuratul AinORCID

Abstract

In this study, water at high temperatures (150, 175, 200 °C) and in a vacuum state (−0.1 MPa) was applied to graphite nanosheets to enhance surface activity to promote the formation of oxygen-containing functional groups through supercritical water treatment. Nylon 610 nanocomposites (with treated or untreated nanosheets as nanofillers) were then synthesized using interfacial polymerization. X-ray diffraction (XRD) analysis showed that the water treatment did not alter the crystal structure of the carbon nanosheets. Additionally, Fourier transform infrared spectroscopy (FTIR) analysis showed the presence of amide peaks within the nanocomposites, indicating the presence of hydrogen bonding between the nanosheets and the polymer matrix. The intensity of the amide peaks was higher for nanocomposites combined with treated nanosheets than untreated ones. This hydrogen bonding is beneficial to the conductivity of the nanocomposites. The conductivity of treated nanosheets/nylon nanocomposites generally decreased with increasing wt%, while the conductivity of untreated nanosheets/nylon nanocomposites increased with increasing wt%. The decrementing of conductivity in the treated nanosheets/nylon nanocomposites is due to the agglomeration of the nanosheets within the composite. This is in in line with scanning electron microscopy (SEM) results which showed that at higher wt%, the aggregation condition tended to occur. The highest conductivity obtained is 0.004135 S/m, as compared to the conductivity of neat nylon 610, which is 10−14 S/m. This improvement in electrical properties can be attributed to the intact structure of the nanosheets and the interaction between the nanofillers and the nylon 610 matrix. The optimum nylon 610 nanocomposite synthesized was the one incorporated with 0.5 wt% graphite nanosheets treated at 200 °C and −0.1 MPa, which possess the highest conductivity.

Funder

Ministry of Higher Education (MOHE) of the Federal Government of Malaysia via the Fundamental Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3