Strong, Tough, and Adhesive Polyampholyte/Natural Fiber Composite Hydrogels

Author:

Yan Yongqi,Xiao Longya,Teng Qin,Jiang Yuanyuan,Deng Qin,Li Xuefeng,Huang YiwanORCID

Abstract

Hydrogels with high mechanical strength, good crack resistance, and good adhesion are highly desirable in various areas, such as soft electronics and wound dressing. Yet, these properties are usually mutually exclusive, so achieving such hydrogels is difficult. Herein, we fabricate a series of strong, tough, and adhesive composite hydrogels from polyampholyte (PA) gel reinforced by nonwoven cellulose-based fiber fabric (CF) via a simple composite strategy. In this strategy, CF could form a good interface with the relatively tough PA gel matrix, providing high load-bearing capability and good crack resistance for the composite gels. The relatively soft, sticky PA gel matrix could also provide a large effective contact area to achieve good adhesion. The effect of CF content on the mechanical and adhesion properties of composite gels is systematically studied. The optimized composite gel possesses 35.2 MPa of Young’s modulus, 4.3 MPa of tensile strength, 8.1 kJ m−2 of tearing energy, 943 kPa of self-adhesive strength, and 1.4 kJ m−2 of self-adhesive energy, which is 22.1, 2.3, 1.8, 6.0, and 4.2 times those of the gel matrix, respectively. The samples could also form good adhesion to diverse substrates. This work opens a simple route for fabricating strong, tough, and adhesive hydrogels.

Funder

National Natural Science Foundation of China

Doctoral Scientific Research Starting Foundation of Hubei University of Technology

Open Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology

Open Fund of Hubei Provincial Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3