Investigation of Alumina-Doped Prunus domestica Gum Grafted Polyaniline Epoxy Resin for Corrosion Protection Coatings for Mild Steel and Stainless Steel

Author:

Kamran Muhammad,Shah Anwar ul Haq AliORCID,Rahman GulORCID,Bilal SalmaORCID,Röse PhilippORCID

Abstract

Eco-friendly inhibitors have attracted considerable interest due to the increasing environmental issues caused by the extensive use of hazardous corrosion inhibitors. In this paper, environmentally friendly PDG-g-PANI/Al2O3 composites were prepared by a low-cost inverse emulsion polymerization for corrosion inhibition of mild steel (MS) and stainless steel (SS). The PDG-g-PANI/Al2O3 composites were characterized by different techniques such as X-ray diffraction (XRD), UV/Vis, and FTIR spectroscopy. XRD measurements show that the PDG-g-PANI/Al2O3 composite is mostly amorphous and scanning electron micrographs (SEM) reveal a uniform distribution of Al2O3 on the surface of the PDG-g-PANI matrix. The composite was applied as a corrosion inhibitor on mild steel (MS) and stainless steel (SS), and its efficiency was investigated by potentiodynamic polarization measurement in a 3.5% NaCl and 1 M H2SO4 solution. Corrosion kinetic parameters obtained from Tafel evaluation show that the PDG-g-PANI/Al2O3 composites protect the surface of MS and SS with inhibition efficiencies of 92.3% and 51.9% in 3.5% NaCl solution, which is notably higher than those obtained with untreated epoxy resin (89.3% and 99.5%). In particular, the mixture of epoxy/PDG-g-PANI/Al2O3 shows the best performance with an inhibition efficiency up to 99.9% on MS and SS. An equivalent good inhibition efficiency was obtained for the composite for 1M H2SO4. Analysis of activation energy, formation enthalpy, and entropy values suggest that the epoxy/PDG-g-PANI/Al2O3 coating is thermodynamically favorable for corrosion protection of MS and exhibits long-lasting stability.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3