Development of a Novel Biobased Polyurethane Resin System for Structural Composites

Author:

Echeverria-Altuna Oihane,Ollo Olatz,Larraza Izaskun,Elizetxea Cristina,Harismendy Isabel,Eceiza ArantxaORCID

Abstract

Polyurethanes are gaining increasing interest for their use as structural components subjected to cyclic loads, such as leaf springs. Thermoset polyurethane (PUR) based technology offers some advantages, such as fatigue resistance, low viscosity, and fast curing. However, current PUR formulations present two major drawbacks: their petrochemical origin and high reactivity. The aim of this work was to develop a novel biobased PUR (BIO-PUR) with the required mechanical properties and processability for manufacturing structural composites by resin transfer moulding (RTM). For this purpose, a high functionality and high hydroxyl index castor-oil-based polyol was used combined with a biobased glycerol (BIO-Gly) to increase the crosslinking density and improve the final properties of the BIO-PUR. The viscosity and reactivity of the different systems were studied by means of rheology tests and differential scanning calorimetry (DSC). Thermal and mechanical properties were studied by dynamic mechanical analysis (DMA) and flexural tests. Furthermore, the RTM process of a representative part was simulated and validated through the manufacturing and testing of plates. The properties of the BIO-PUR resin systems were strongly influenced by the addition of biobased glycerol and its effect on the crosslinking density. The combination of a high functionality and hydroxyl index biobased polyol with the biobased glycerol resulted in a high-performance BIO-PUR with the required reactivity and final properties for structural applications.

Funder

Basque Government through the ELKARTEK 2021

the frame of Grupos Consolidados

University of the Basque Country

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference50 articles.

1. The Rise of HP-RTM

2. Advances in Urethane Composites: Resins With Tunable Reaction Times;Bareis;Proceedings of the COMPOSITES,2011

3. SGL Carbon Produces Composite Leaf Springs for Ford Transit

4. Optimizing Leaf Springs via Enhanced Composite Solutions;Albrecht;JEC Compos. Mag.,2019

5. Progress with Polyurethane Matrix Resin Technology: High-Speed Resin Transfer Molding Processes and Application Examples;Kreiling;Proceedings of the SPE ACCE,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3