Modelling of Web-Crippling Behavior of Pultruded GFRP I Sections at Elevated Temperatures

Author:

Zhang Lingfeng,Li Qianyi,Long Ying,Cao Dafu,Guo Kai

Abstract

The concentrated transverse load may lead to the web crippling of pultruded GFRP sections due to the lower transverse mechanical properties. Several investigations have been conducted on the web-crippling behavior of the GFRP sections under room temperature. However, the web-crippling behavior is not yet understood when subjected to elevated temperatures. To address this issue, a finite element model considering the temperature-dependent material properties, Hashin failure criterion and the damage evolution law are successfully developed to simulate the web-crippling behavior of the GFRP I sections under elevated temperatures. The numerical model was validated by the web-crippling experiments at room temperature with the end-two-flange (ETF) and end bearing with ground support (EG) loading configurations. The developed model can accurately predict the ultimate loads and failure modes. Moreover, it was found that the initial damage was triggered by exceeding the shear strength at the web-flange junction near the corner of the bearing plate and independent of the elevated temperatures and loading configurations. The ultimate load and stiffness decreased obviously with the increasing temperature. At 220 °C, the ultimate load of specimens under ETF and EG loading configurations significantly decreased by 57% and 62%, respectively, whereas the elastic stiffness obviously reduced by 87% and 88%, respectively.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3