Effect of 3D Printer Type and Use of Protection Gas during Post-Curing on Some Physical Properties of Soft Occlusal Splint Material

Author:

Wada JunichiroORCID,Wada Kanae,Gibreel Mona,Wakabayashi Noriyuki,Iwamoto Tsutomu,Vallittu Pekka K.,Lassila Lippo

Abstract

Despite the fact that three-dimensional (3D) printing is frequently used in the manufacturing of occlusal splints, the effects of the 3D printer type and post-curing methods are still unclear. The aim of this study was to investigate the effect of the printer type (digital light processing: DLP; and liquid crystal display: LCD) as well as the post-curing method with two different atmospheric conditions (air and nitrogen gas (N2)) on the mechanical and surface properties of 3D-printed soft-type occlusal splint material. The evaluated properties were flexural strength, flexural modulus, Vickers hardness (VHN), fracture toughness, degree of double bond conversion (DC%), water sorption, water solubility, and 3D microlayer structure. The printer type significantly affected all the evaluated properties. Flexural strength, flexural modulus, and fracture toughness were significantly higher when specimens were printed by a DLP printer, while VHN and DC% were significantly higher, and a smoother surface was noticeably obtained when printed by an LCD printer. The post-curing at an N2 atmosphere significantly enhanced all of the evaluated properties except water sorption, 3D microlayer structure, and fracture toughness. The current results suggested that the printer type and the post-curing methods would have an impact on the mechanical and surface properties of the evaluated material.

Funder

The Japan Society for the Promotion of Science

ERDF React-EU

The Scandinavia–Japan Sasakawa Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3