Evaluation of Fracture Strength of Fiber-Reinforced Direct Composite Resin Restorations: An In Vitro Study

Author:

Albar Nassreen Hassan MohammadORCID,Khayat Waad Fahmi

Abstract

This in vitro study aimed to compare the fracture strength of direct non-reinforced class II composite resin restorations and polyethylene fiber-reinforced restorations, and also to investigate the influence of the locations of polyethylene fibers within the cavity on the fracture strength. Sixty freshly extracted human teeth were disinfected and prepared (class II cavity design). The teeth were assigned randomly into four groups (n = 13). Group I (control) was restored with nano-hybrid composite resin. The other three experimental groups were restored with the same composite resin material reinforced by polyethylene fibers (Ribbond) at different locations. Fibers were placed either on the axial wall (Group II), on the gingival floor (Group III), or on the axial wall and pulpal/gingival floor (Group IV) of the proximal cavity. All the teeth were subjected to thermocycling to simulate the oral environment. The fracture strength was measured using a universal testing machine. Group IV had the highest mean fracture strength at maximum load (148.74 MPa), followed by Group II (140.73 MPa), Group III (136.34 MPa), and Group I (130.08 MPa), with a statistically significant difference from the control group (p = 0.008) but not between groups II and III.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference38 articles.

1. Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table|GHDx

2. Stratification in anterior teeth using one dentine shade and a predefined thickness of enamel: A new concept in composite layering--Part I;Manauta;Odontostomatol. Trop,2014

3. Stratification in anterior teeth using one dentine shade and a predefined thickness of enamel: A new concept in composite layering--Part II;Manauta;Odontostomatol. Trop,2014

4. Longevity of posterior composite restorations: Not only a matter of materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3